How to find the centroid of a region between two functions

In mathematics and physics, the centroid or geometric center of a plane figure is the arithmetic mean position of all the points within the shape.
The coordinates of the centroid of standard 2-dimensional geometric objects such as triangles, parallelograms, quarter/half circles, ellipses, etc. are well-known [1], [2], [3].
If the object is bounded by the graph of two continuous functions f and g, the calculation of the centroid coordinates is more elaborate:

The centroid $\mathbf{C}\left(\mathbf{x}_{\mathbf{c}} \mid \mathbf{y}_{\mathrm{c}}\right)$ of a region bounded by the graphs of the continuous functions f and g such that $f(x) \geq g(x)$ or $g(x) \geq f(x)$ on the interval $[a, b]$ with $a \leq x \leq b$, is given by

$$
\begin{aligned}
& x_{c}=\frac{1}{A} \int_{a}^{b} x[f(x)-g(x)] d x \\
& y_{c}=\frac{1}{2 A} \int_{a}^{b}\left[[f(x)]^{2}-[g(x)]^{2}\right] d x
\end{aligned}
$$

where A is the area of the region:

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

The above condition for f and g claims that f and g must not intersect within the interval $[a, b]$.
The GC3 file Centroid.gc3 shows a plot of the functions f and g, the region bounded by the graphs and the borders a and b, and the centroid. Furthermore, it alerts you if f and g intersect within the interval [a, b].

Programming Details:

- The three integrals are computed numerically with the extended Simpson Rule (for more details refer to How to calculate integrals with GC3 / 3. Numerical Integration).
- The coloring for the region between f and g within the interval $[a, b]$ is done in an 'inverted' way, i.e. the region itself is 'empty' whereas the outer region in the interval is white. You will find more details and an alternative in How to calculate integrals with GC3 / 5. Area between two functions.
- The centroid $C\left(x_{c} \mid y_{c}\right)$ can be displayed as crosshairs and/or dotted lines:

V	Y $\mathrm{y}=$ -	yc "dotted line	
\checkmark	$\mathrm{x}=$ -	xc "dotted line	
V	sc $=0.4$	ize of crosshairs marking the centroid	0.4
V	$x \operatorname{cross}(\mathrm{x})=\mathrm{yc} ; \mathrm{x}>=\mathrm{xc}-\mathrm{sc}$ and $\mathrm{x}<=\mathrm{xc}+\mathrm{sc}$		
(V) ycross(x$)=\mathrm{xc} ; \mathrm{y}>=\mathrm{yc}$-sc and $\mathrm{y}<=\mathrm{yc}+\mathrm{sc}$	$y \operatorname{cross}(\mathrm{x})=\mathrm{xc} ; \mathrm{y}>=\mathrm{yc}-\mathrm{sc}$ and $\mathrm{y}<=\mathrm{yc}+\mathrm{sc}$		
\checkmark	y=	xcross(x) "crosshairs	
\square	$x=$	ycross(y) "crosshairs	

- The check for an intersection of f and g within $[a, b]$ is more elaborate and done in the following way:
- For the difference function $h(x)=f(x)-g(x)$ the minimum $y_{\text {min }}$ and maximum $y_{\text {max }}$ are computed.

This is done by dividing the interval $[\mathrm{a}, \mathrm{b}$] into N parts (e.g. $\mathrm{N}=500$) and letting a recursion over all parts find the minimum and maximum y value:

V	"------- Check for intersection(s) of f and g within [a, b]	
V	$\mathrm{N}=500$ "number of data points in [a, b]	500
V	delta_x=(b-a)/N	0.02
V	$h(i)=f\left(a+i^{*}\right.$ delta_x $)-g\left(a+i^{*}\right.$ delta_s) "discrete difference function for $f(x)-g(x)$	
V	*find maximum M and minimum m of h within $[a, b]$	
V	$M(\mathrm{j})=\max (\mathrm{h}(\mathrm{j}), \mathrm{M}(\mathrm{j}-1) \mathrm{)} ; \mathrm{j}>0$	
V	$\mathrm{m}(\mathrm{j})=\min (\mathrm{h}(\mathrm{j}), \mathrm{m}(\mathrm{j}-1)) \quad ; \mathrm{j}>0$	
V	$\mathrm{M}(\mathrm{j})=\mathrm{h}(\mathrm{j}) \quad ; \mathrm{j}=0$	
V	$\mathrm{m}(\mathrm{j})=\mathrm{h}(\mathrm{j}) \quad ; \mathrm{j}=0$	
V	$y \max =\mathrm{M}(\mathrm{N})$	5.92590816
V	$y \min =m(N)$	0

- By comparing the algebraic signs of $y_{\text {min }}$ and $y_{\max }$, a function intsec_flag delivers either 1 if there is an intersection or 0 if there is no intersection, following these conditions:

$$
\text { intsec_flag }=\left\{\begin{array}{l}
1, \operatorname{sign}\left(\mathrm{y}_{\min }\right) \neq \operatorname{sign}\left(\mathrm{y}_{\max }\right) \text { and } \operatorname{sign}\left(\mathrm{y}_{\min }\right), \operatorname{sign}\left(\mathrm{y}_{\max }\right) \neq 0 \\
0, \operatorname{sign}\left(\mathrm{y}_{\min }\right)=\operatorname{sign}\left(\mathrm{y}_{\max }\right) \\
0, \operatorname{sign}\left(\mathrm{y}_{\min }\right) \text { or } \operatorname{sign}\left(\mathrm{y}_{\max }\right)=0
\end{array}\right.
$$

In other words: f and g do not intersect if both of the algebraic signs are equal or one of them is 0 which is implemented in the following way:


```
( \()\) signum \((\mathrm{x})=0 \quad ; \mathrm{abs}(\mathrm{x})<=10^{\wedge}(-15)\)
```

```
\begin{tabular}{|l|l}
\hline signum(ymax) & 1 \\
\hline \hline signum(ymin) & 0 \\
\hline
\end{tabular}
```

```
intsec_flag(dummy) \(=0 ;\) signum(ymax) *ignum(ymin) \(>=0\)
intsec_flag(dummy) \(=1\);signum(ymax) \({ }^{*}\) signum(ymin) \(<0\)
( \(/\) intsec_flag(0)
0
```

Note: Instead of using the built-in function 'sign', a modified function 'signum' is used. This is necessary since it may happen that the calculation of $y_{\text {min }}$ or $y_{\max }$ delivers a 0 but the sign function delivers a 1 or -1 due to calculation accuracy.

- The variable intsec_flag is then used to colorize the plot area red if there is an intersection (intsec_flag $=1$), alerting you that the displayed point C is not valid anymore:

```
check(dummy)=x ;intsec_flag(0)=1
V y> check(0) "red xy plane if intersection within [a,b]
```

In this example, the value b for the right border is set too high so that an intersection takes place within [a, b]:

As an alternative or addition to this you may suppress displaying C and the dotted lines as shown here for C :

Note: The additional lines 'xcross1(x)=...' and 'ycross1(x)=...' are necessary since GC3 can 'only' handle two expressions combined with AND but three are needed.

Further Examples

- Find the centroid of the region between f and g within $[0,2 \pi]$ with
$f(x)=[\sin (x)]^{2}+2.5$
$g(x)=-[\sin (x)]^{2}+2.5$
Note: f and g do not intersect at point (π | 2.5); they only touch each other at this point.

- Find the centroid of the region between f and g within $[0,2 \pi]$ with
$f(x)=\sin (x)+2.5$
$g(x)=-\sin (x)+2.5$
Note: At point (π | 2.5) f and g intersect and a warning is displayed.

- Find the centroid of a quarter circle with a radius of 1 :
$f(x)=\sqrt{1-x^{2}}$
$g(x)=0$
Interval: [0, 1]
Exact values:

$$
x_{c}=y_{c}=\frac{4}{3 \pi} \quad A=\frac{\pi}{4}
$$

Comparing the exact values with the calculated values shows an absolute error of approx. 10^{-6}. This is due to the fact that f has an infinite slope at point $(1 \mid 0)$. (compare with How to calculate integrals with GC3 / 3. Numerical Integration).

Quick References:
[1] https://en.wikipedia.org/wiki/Centroid
[2] https://en.wikipedia.org/wiki/List_of_centroids
[3] http://www.bgu.ac.il/~yakhot/mf1/Centroids.pdf

